Wavelet Bases Adapted to Pseudo-diierential Operators

نویسنده

  • Stephan Dahlke
چکیده

This paper is concerned with the numerical treatment of pseudo-diierential equations in I R 2 , employing wavelet Galerkin methods. We construct wavelet bases adapted to a given pseudo-diierential operator in the sense that functions on diierent reenement levels are orthogonal with respect to a certain bilinear form induced by the operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NON-HAAR p-ADIC WAVELETS AND THEIR APPLICATION TO PSEUDO-DIFFERENTIAL OPERATORS AND EQUATIONS

In this paper a countable family of new compactly supported non-Haar p-adic wavelet bases in L(Q p ) is constructed. We use the wavelet bases in the following applications: in the theory of p-adic pseudo-differential operators and equations. Namely, we study the connections between wavelet analysis and spectral analysis of p-adic pseudo-differential operators. A criterion for a multidimensional...

متن کامل

Wavelet - Galerkin - Methods : an Adaptedbiorthogonal Wavelet

In this paper we construct a compactly supported biorthogonal wavelet basis adapted to some simple diierential operators. Moreover, we estimate the condition numbers of the corresponding stiiness matrices.

متن کامل

Biorthogonal Wavelets and Multigrid

We will be concerned with the solution of an elliptic boundary value problem in one dimension with polynomial coeecients. In a Galerkin approach, we employ biorthogonal wavelets adapted to a diierential operator with constant coeecients, and use the reenement equations to set up the system of linear equations with exact entries (up to round-oo). For the solution of the linear equation, we const...

متن کامل

A Pseudo - Wavelet Scheme for theTwo - Dimensional Navier -

Numerical schemes taking advantage of the wavelet bases capabilities to compress both functions and operators are presented. Galerkin methods for the heat and Poisson equations in dimension two are developed and numerically tested. Then a pseudo-wavelet scheme, using collocation for the nonlinear term, is deened for the two-dimensional Navier-Stokes equations. Numerical tests prove its accuracy.

متن کامل

Orthogonal Bandelet Bases for Geometric Images Approximation

This paper introduces orthogonal bandelet bases to approximate images having some geometrical regularity. These bandelet bases are computed by applying parametrized Alpert transform operators over an orthogonal wavelet basis. These bandeletization operators depend upon a multiscale geometric flow that is adapted to the image at each wavelet scale. This bandelet construction has a hierarchical s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992